
 Sportscience 16, 12-15, 2012 

SPORTSCIENCE · sportsci.org  

Perspectives / Research Resources  

Bootstrapping Inferential Statistics with a Spreadsheet 
Will G Hopkins 

Sportscience 16, 12-15, 2012 (sportsci.org/2012/wghboot.htm) 

Sport and Recreation, AUT University, Auckland 0627, New Zealand. Email. Reviewer: Alan M Batterham, School of Health 
and Social Care, University of Teesside, Middlesbrough TS1 3BA, UK. 

 

Bootstrapping is a method for generating the uncertainties (confidence limits 
and probabilities) in the true value of a statistic from a study of a sample.  
Bootstrapping is useful when the usual modeling methods based on assump-
tions about sampling distributions are untrustworthy or unavailable, for example 
when modeling the optimum effect of age or of dose of a treatment on perfor-
mance via a quadratic relationship. In bootstrapping, the value of the statistic is 
calculated for each of a thousand or more samples, each of the same size as 
the original sample and each drawn randomly (with replacement) from the 
original sample. These values are then analyzed as if they came from repeti-
tions of the study; thus, the confidence limits are given by appropriate percen-
tiles of the values, and probabilities are given by the proportion of values falling 
above or below chosen magnitude thresholds. Depending on the nature of the 
data, bootstrapping provides trustworthy values of these inferential statistics 
when the sample size is at least 20. The spreadsheets accompanying this 
article were developed to model a quadratic relationship, but there are also 
versions to model a simple linear relationship and a quadratic relationship with 
adjustment for a linear covariate. KEYWORDS: confidence limits, magnitude-
based inference, optimum, precision of estimation, quadratic, uncertainty. 
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When you analyze the data from the study of 

a sample, you have to estimate the uncertainty 

in the magnitude of an effect representing the 

relationship between predictor and dependent 

variables. Uncertainty refers to the fact that a 

different sample would give a different value 

for the magnitude. The uncertainty should be 

expressed as confidence limits or a confidence 

interval, representing the range of values within 

which you are reasonably certain the true mag-

nitude of the relationship would fall. True refers 

to the value you would get if you had the luxury 

of a huge sample, and reasonably certain is the 

level of confidence, such as 90% or 99%. You 

should also calculate the probabilities that the 

true effect is substantial in some positive and 

negative sense. The confidence limits and prob-

abilities are inferential statistics that help you 

make a probabilistic decision about the magni-

tude of the true effect (Hopkins et al., 2009). 

Fine, so how do you calculate the confidence 

limits and the probabilities? The usual approach 

is to make assumptions about the way the value 

of the effect statistics would vary, if you repeat-

ed the study again and again. The values make 

up the so-called sampling distribution of the 

statistic. For many statistics the shape of the 

sampling distribution is known, and the confi-

dence limits and probabilities can be worked 

out using well-known formulae involving the t 

or related statistics derived from the sample. 

These formulae are the basis of the inferences 

built into the spreadsheets at this site. 

Bootstrapping is an alternative approach to 

generating confidence limits and probabilities 

about the true value of the effect, and it is the 

only approach when the sampling distribution is 

either not known or too difficult to quantify. In 

the item on bootstrapping at my stats site, I give 

the example of the difference between correla-

tion coefficients derived from the same sub-

jects. Another example that has emerged in 

several studies with my colleagues is the opti-

mum value of a predictor that has a quadratic 

relationship with the dependent variable. Figure 

1 shows an example where the predictor is dose 

of a treatment and the dependent is change in 

performance. Similar quadratic relationships 

work well for modeling the optimum age in an 

athlete's career performance trajectory (un-
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published observations). Indeed, it is a simple 

matter to show with calculus that the relation-

ship between any predictor and dependent in 

the vicinity of a maximum or a minimum is 

quadratic. A quadratic model is therefore an 

important analytical tool for investigating opti-

ma. Conventional modeling can provide ap-

proximate confidence limits for the optimum 

value of the dependent, but exact confidence 

limits for the optimum and for the value of the 

dependent evincing it require bootstrapping. 

 

Figure 1. Performance change in 20 athletes each 
receiving one of five training treatments that can be 
ordered according to dose (e.g., intensity and duration 
of intervals). The curve is the best-fitting quadratic, the 
dashed arrows indicate the optimum dose and perfor-
mance change, and the double-headed arrow repre-
sents the uncertainty in the optimum dose to be esti-
mated by bootstrapping. 

 

 

The term bootstrapping refers to the old par-

adox about people lifting themselves off the 

ground by pulling up on the straps on the backs 

of their own boots. A similar seemingly impos-

sible thing occurs when you resample (to de-

scribe bootstrapping more formally) to get con-

fidence limits. Here's how it's done. 

For a sample of 20 or more subjects drawn 

randomly from some population, you can "sort 

of" recreate the population by duplicating the 

sample endlessly. The next step is to draw at 

least 1000 samples from this population, each 

of the same size as the original sample. In any 

given sample, some subjects will appear twice 

or more, while others won't be there at all, but 

that doesn't matter. Next you calculate the val-

ues of the outcome statistics for each of these 

samples. In the example above, the statistics 

would be the value of dose at the maximum, 

given by x = -b/2a for the quadratic y = 

ax2+bx+c, along with the value of performance 

change when this value of x is put into the 

quadratic. Finally, you rank the resulting 1000 

values of the optimum dose and count in from 

each end until you reach the 5th percentile and 

95th percentile, which are the 90% confidence 

limits. The PERCENTILE function in Excel 

provides the estimates without sorting and rank-

ing the values. You repeat this process for the 

effect on the dependent variable (here, perfor-

mance change) at the optimum. 

The median value (50th percentile) from the 

bootstrap samples should be practically the 

same as the value of the outcome statistic in the 

original sample. A slight mismatch can occur 

with only 1000 bootstrap samples. I have not 

used more samples, because the files are al-

ready quite large (2-3 MB), and the calculations 

can be slow to update. When you refresh the 

bootstrap samples (using Ctrl-D–see instruc-

tions in the spreadsheet), the median should 

hover around the original value. A consistent 

substantial difference can arise when the de-

pendent and/or predictor variables are skewed, 

in which case log transformation may correct 

the problem. A predictor variable with only a 

few integer values (e.g., 0 and 1, denoting fe-

males and males) can also result in a consistent 

mismatch, especially if most of the values of 

the predictor are the same (e.g., 17 males de-

noted by 1s and only 3 females denoted by 0s). 

If something like this in your data produces a 

big difference, the only solution is a larger 

sample size than in your original study, which 

is usually out of the question by the time you 

are doing the analysis. 

The links below point to four spreadsheets. I 

suggest you work your way through them in the 

order shown. Start with the simplest of all linear 

models, a single predictor. Try changing the 

values of the predictor to 0s and 1s to model the 

simple difference in the means between two 

groups. (Note that bootstrapping automatically 

takes into account any difference in the stand-

ard deviations in the two groups, which you 

would normally deal with using the unequal-

variances t statistic.) Move on to the spread-

sheet for a quadratic predictor. You will find 

this spreadsheet allows for a quadratic maxi-

mum (an inverted-U shape) and a quadratic 
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minimum (a U shape). If the quadratic effect is 

weak and the sample size is not large, a sub-

stantial proportion of the bootstrap samples will 

have a shape opposite to that of the original 

sample, in which case you will have to abandon 

quadratic modeling and opt instead for a simple 

linear model (using either the previous spread-

sheet or usual modeling). The third spreadsheet 

has a quadratic model with adjustment for the 

effect of an extra linear covariate. The covariate 

can be continuous or scored simply as 0s and 

1s, as shown in the spreadsheet. Note, however, 

that the model fits a quadratic of the same shape 

to the two groups of subjects implied by the 0s 

and 1s. If you want to fit a different quadratic to 

two or more groups, put each group into a sepa-

rate spreadsheet, hopefully with 20 subjects in 

each group! You can do inferential comparisons 

of the resulting statistics for the groups using 

the spreadsheet to compare/combine effects 

(Hopkins, 2006). The last spreadsheet has two 

linear predictors. Use this one if quadratic mod-

eling with the third spreadsheet fails. 

For all their complexity, these spreadsheets 

lack several features of my other spreadsheets: 

log transformation, standardization of effects, 

and qualitative inferences… 

• You will need to do any necessary log trans-

formation before entering the numbers in the 

bootstrap spreadsheet. If your data represent a 

change in performance (as shown in the 

spreadsheets) and the effects are more than a 

few percent, you should enter the change in 

100× the natural log of the performance 

scores, not the actual percent changes. Back-

transform the bootstrapped effect on perfor-

mance to a percent score using the formula 

100*exp(effect/100)-100. (For effects of 

<10%, there is practically no difference be-

tween the 100×natural-log and the back-

transformed effects.)  

• Standardization is performed by dividing all 

effects by the appropriate between-subject 

standard deviation. If you used log transfor-

mation, do the standardization entirely with 

log-transformed values, including the stand-

ard deviation of the log-transformed raw data.  

• The spreadsheets  provide estimates of 

chances that the true effects are substantial 

and the odds ratios for substantially posi-

tive/negative, but you will have to understand 

the process of magnitude-based inference to 

convert these to qualitative inferences (un-

clear, possibly negative, likely beneficial, 

etc.).  See the appropriate section of the pro-

gressive statistics article  (Hopkins et al., 

2009) for more. 

Finally, how the spreadsheets work… I use 

the LINEST function to do a multiple linear 

regression connecting the predictors to the de-

pendent. LINEST has several annoying "fea-

tures": you have to invoke it with a strange 

combination of keystrokes, you can't have miss-

ing values, you can't insert columns, and (unbe-

lievably) the coefficients of the predictors are 

produced in the opposite order to the variables. 

LINEST also produces standard errors but not 

covariances for the coefficients, so you can't 

use it to estimate confidence limits for predicted 

values. (Bootstrapping generates confidence 

limits without using the standard errors.)  See 

the link below for separate instructions on how 

to use LINEST. 

Bootstrapping is a lot easier with Excel since 

the advent of xlsx files, because each bootstrap 

sample occupies several columns, and xls files 

were limited to 256 columns. For each boot-

strap sample I create a set of columns that are 

copies of the columns where the original data 

are analyzed. The data for each bootstrap sam-

ple are selected from the original data using the 

RANDBETWEEN and INDEX functions, as 

you will see if you click on the appropriate 

cells. It's then a simple matter to generate the 

confidence limits and probabilities of exceeding 

magnitude thresholds using the PERCENTILE 

function.   
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Spreadsheets 

A single linear predictor: Bootstrap1predictor.xlsx 

A quadratic predictor: BootstrapQuadratic.xlsx 

A quadratic plus a linear covariate: BootstrapQuadraticPlus1covariate.xlsx 

Two linear predictors: Bootstrap2predictors.xlsx 

How to use LINEST: UsingLINESTinExcel.xlsx 
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