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Magnitude-based decisions (MBD) is an inferential method that avoids the 
problems of null-hypothesis significance testing by interpreting the frequentist 
compatibility interval and sampling distribution in terms of uncertainty in the 
true value of an effect. This reference-Bayesian interpretation is defensible for 
the usual small (and any larger) sample sizes in sport and exercise research, 
if the statistical model is accurate, the measures are valid, the sample is rep-
resentative, and the researcher proffers an uninformative or weakly informa-
tive prior belief in the magnitude of the effect. For statisticians who dispute the 
Bayesian interpretation and favor Popperian hypothesis testing, MBD can be 
formulated as interval hypothesis tests. In the clinical version of MBD, an effect 
is clear, has acceptable uncertainty, and is considered potentially publishable 
and implementable in a clinical or practical setting, when the true effect is most 
unlikely harmful and at least possibly beneficial. This requirement is equivalent 
to strong rejection of the hypothesis of a harmful effect (pH<0.005) and weak 
failure to reject the hypothesis of a beneficial effect (pB>0.25). In non-clinical 
MBD, an effect is clear and has acceptable uncertainty and publishability, 
when the true effect is very unlikely to be substantial of one or other sign. This 
requirement is equivalent to moderate rejection of one or other hypothesis of 
substantial magnitude (p+<0.05 or p–<0.05). An unclear, indecisive or incon-
clusive and potentially unpublishable effect has inadequate precision or unac-
ceptable uncertainty and is equivalent to failure to reject both hypotheses; a 
minimum desirable sample size is estimated to avoid this outcome. In both 
forms of MBD, level of evidence for the magnitude of the true effect is ex-
pressed using the Bayesian terms possibly, likely, very likely and most likely; 
equivalent frequentist terms derived from additional hypothesis tests of non-
substantiveness and non-triviality are respectively ambiguously, weakly, mod-
erately and strongly compatible with the magnitude. To reduce misinterpreta-
tion of outcomes, clearly, decisively or conclusively should be reserved for ef-
fect magnitudes that are very likely or most likely substantial or trivial (moder-
ately or strongly compatible with substantial or trivial); these scenarios repre-
sent rejection of the hypotheses that define superiority (minimum-effects) and 
equivalence testing, which are automatically available in MBD . The error rates 
associated with the hypothesis tests correspond to those originally defined and 
quantified in MBD, which were shown by simulation to be generally lower than 
those of null-hypothesis testing with 80% power for 5% significance. Lower 
Type-2 (failed-discovery) error rates could be obtained by reducing the p-value 
thresholds, but the Type-1 (false-discovery) error rates for trivial true clinical 
effects, bias with publishable effects in small samples, and pre-planned sam-
ple sizes would all increase. In conclusion, researchers can make magnitude-
based decisions, confident that the decisions have a sound Bayesian or fre-
quentist theoretical basis and acceptable inferential properties with the current 
probability decision thresholds. KEYWORDS: Bayes, clinical decisions, confi-
dence, frequentist, inference, p value, probability, publication bias, sample, 
statistical significance. 
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Associate editor's note. This article is now open for 
post-publication peer review. I invite you to write 
comments in the template and email to me, Ross Ne-
ville. You may also comment on the In-brief item on 
Moving Forward with Magnitude-Based Decisions. 
The original version with tracked changes resulting 
in the current version is available as a docx here. 
Introduction 

When researchers study a sample, they obtain 
an estimate of the magnitude of an effect statis-
tic, such as a change in a mean measure of health 
or performance following an intervention. With 
the usual but crucial assumptions about repre-
sentativeness of the sample, validity of the 
measures, and accuracy of the statistical model, 
a sample of sufficiently large size yields an ac-
curate estimate of the true or population magni-
tude, because repeated samples would yield 
practically identical estimates. Sample sizes are 
seldom this large, so an assertion about the true 
magnitude of an effect should account for the 
fact that the sample value is only an approximate 
estimate of the true value.  

In this article I explain how to make an asser-
tion about the true magnitude via the usual ap-
proach of the null-hypothesis significance test 
(NHST) and via magnitude-based inference 
(MBI), an approach that has been severely criti-
cized recently (Sainani, 2018; Sainani et al., 
2019; Welsh & Knight, 2015). Although the crit-
icisms have been addressed (Hopkins, 2019a; 
Hopkins & Batterham, 2016; Hopkins & 
Batterham, 2018), it has been suggested that 
MBI might be more acceptable to at least some 
members of the statistical community, if it were 
presented as hypothesis tests, along with a name 
change to magnitude-based decisions (MBD; 
Hopkins, 2019a). This article is my response to 
that suggestion. I include an appendix with 
guidelines for presenting MBD as hypothesis 
tests in a manuscript. 

For the benefit of practitioners with little for-
mal training in statistics (myself included), I 

have written the article with little recourse to sta-
tistical jargon. An article more suitable for an au-
dience of statisticians has been submitted for 
publication by others (Aisbett et al., 2020); for 
the background to that article, see my posting 
and other postings each side of it in the 
datamethods forum, updated in the In-brief item 
on MBD in this issue. An updated version of a 
slideshow first presented at the German Sport 
University in July 2019 is also a succinct sum-
mary of this article and the In-brief item. 
Inferential Methods 

The null-hypothesis significance test is the 
traditional approach to making as assertion about 
the true magnitude of an effect. In NHST, the 
data are converted into a sampling probability 
distribution for the effect (or a transformation of 
it), representing expected variation in the effect 
with repeated sampling (Figure 1). This distribu-
tion is well-defined, usually a t or z. Effect val-
ues spanning the central region of the distribu-
tion represent values that are most compatible 
with the sample data and the model, and the in-
terval spanning 95% of the values is known as 
the 95% compatibility interval (95%CI). If the 
95%CI includes zero, then the data and model 
are compatible with a true effect of zero, so the 
null hypothesis H0 cannot be rejected, as shown 
in Figure 1a. Figure 1b shows the same data as 
Figure 1a, but the region of the distribution to the 
left of the zero and the matching area on the other 
tail are shaded red. The total red area defines a 
probability (p) value, representing evidence 
against the hypothesis: the smaller the p value, 
the better the evidence against it. With a suffi-
ciently small p value, you reject the hypothesis. 
The threshold p value is called the alpha level of 
the test, 0.05 for a 95%CI. The p value here is 
0.04 + 0.04 = 0.08, which is >0.05, so the data 
and model do not support rejection of H0, and the 
effect is declared non-significant. Not shown in 
Figure 1 is the limiting case, when one limit of 
the interval touches zero, and p = 0.05. Figure 1c 
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shows another study of an effect where the data 
and model are not compatible with an effect of 
zero: the 95%CI does not include zero; equiva-
lently the p value is <0.05 (0.01 + 0.01 = 0.02), 
so H0 is rejected, and the effect is declared sig-
nificant.  

When an effect is not significant, researchers 
usually conclude that the true effect is trivial, in-
substantial, or sometimes even zero ("there is no 
effect"). With small sample sizes, such a conclu-
sion is often unjustified, which is easy to demon-
strate by considering the compatibility interval: 

it will often be wide enough to include substan-
tial values of the effect statistic, implying that 
substantial values are compatible with the data 
and model, so the researcher obviously cannot 
conclude that the effect is definitively trivial or 
zero. Unjustified conclusions occur also with 
large sample sizes: here, a significant effect is 
sometimes interpreted as substantial, yet the 
compatibility interval might include only trivial 
values.

Figure 1. Distribution of effect values compatible with a sample and model to illustrate the 
test of the null hypothesis H0 in NHST. (a) The 95% compatibility interval (95%CI) includes 
0, therefore H0 is not rejected. (b) The corresponding p value is 0.04 + 0.04 = 0.08, therefore 
H0 is not rejected (p>0.05). (c) The distribution of values and p value (0.02) for a different 
effect; 0 is not included in the 95%CI, therefore H0 is rejected (p<0.05).  

 

Dissatisfaction with misinterpretations arising 
from NHST has led some researchers and statis-
ticians to focus on the compatibility interval for 
making an assertion about the true magnitude of 
an effect. Magnitude-based inference (MBI) is 
one such method. In MBI, the compatibility in-
terval is interpreted as a range for the true value 
of the effect. A compatibility interval that in-
cludes substantial values of opposite sign is re-
garded as inadequate precision or unacceptable 
uncertainty for characterizing the true magni-
tude, and the effect is therefore deemed unclear. 
Clear effects have adequate precision, and the 
sampling distribution provides probabilistic esti-
mates for reporting the true magnitude: possibly 
harmful, likely trivial, very likely positive, and 
so on. 

Probabilistic assertions about the true magni-
tude of an effect are in the domain of Bayesian 
statistics, so MBI is essentially, although not 
fully, a Bayesian method. For an analysis to be 
fully Bayesian, the researcher includes a prior 
belief in the magnitudes and uncertainties of all 

the parameters in the statistical model, which, to-
gether with the sample data and a sophisticated 
analysis, provide a posterior probability distribu-
tion and credibility interval for the true effect. 
However, an acceptable simplified semi-Bayes-
ian analysis can be performed by combining the 
compatibility interval of an effect with a prior 
belief in the value of the effect statistic, itself ex-
pressed as a compatibility interval (Greenland, 
2006). When a realistic weakly informative prior 
is combined in this manner with an effect de-
rived from a study with a small sample size typ-
ical of those in sport and exercise research (and 
with any larger sample size), the resulting poste-
rior distribution and credibility interval are prac-
tically identical to the compatibility interval and 
sampling distribution (Hopkins, 2019b; 
Mengersen et al., 2016). The probabilistic state-
ments of MBI are therefore effectively Bayesian 
statements for a researcher who would prefer to 
impose no prior belief in the true value of an ef-
fect. Formally, MBI is reference Bayesian, with 
a prior that is so dispersed as to be practically 
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uniform over the range of non-negligible likeli-
hood, and thus only weakly informative relative 
to the likelihood function (S. Greenland, per-
sonal communication). When sample sizes are 
small, researchers should check that a realistic 
weakly informative prior does indeed make no 
practical difference to the compatibility interval, 
as noted in the article (Hopkins, 2019b) on 
Bayesian analysis with a spreadsheet. If a 
weakly informative prior results in noticeable 
"shrinkage" of either of the compatibility limits 
of an effect, or if the magnitude-based decision 
is modified by the prior, the researcher should 
justify such a prior and report the modified deci-
sion. 

Other researchers have proposed a Bayesian 
interpretation of the compatibility interval or the 
sampling distribution similar to those of MBI 
(Albers et al., 2018; Burton, 1994; Shakespeare 
et al., 2001). Some researchers interpret the com-
patibility interval as if it represents precision or 
uncertainty in the estimation of the value of an 
effect, but they stop short of identifying their ap-
proach as Bayesian (Cumming, 2014; Rothman, 
2012). MBI differs from all these approaches by 
providing specific guidance on what constitutes 
adequate precision or acceptable uncertainty 
when making a decision about the magnitude of 
the effect. Partly for this reason, and partly be-
cause of concerns expressed about use of the 
word inference (Greenland, 2019), MBI is now 
known as a method for making magnitude-based 
decisions (Hopkins, 2019a). 

MBD nevertheless finds itself in a precarious 
position, pilloried by Bayesians who insist on in-
formative priors and by frequentists who believe 
that science advances only in Popperian fashion 

by testing and rejecting hypotheses. Sander 
Greenland's suggestion to reframe MBD in terms 
of hypothesis testing was motivated by what he 
sees as the need for the well-defined control of 
error rates that underlie hypothesis testing. I 
have been opposed to hypothesis testing, for rea-
sons espoused by many others, apparently as far 
back as Francis Bacon and Isaac Newton (e.g., 
Glass, 2010). My preference has been instead for 
estimation of the magnitude of effects and their 
uncertainty to make decisions about the true 
magnitude based on the Bayesian interpretation, 
but at the same time accounting for decision er-
rors. I will now show that such decisions are 
equivalent to rejecting or failing to reject several 
hypotheses, and that the errors arising from mak-
ing wrong decisions are the same as the errors 
with hypothesis testing. 
Clinical MBD and the Hypothesis of Harm 

In a clinical or practical setting, it is important 
that the outcome of a study does not result in im-
plementation of an intervention that on average 
could harm the population of interest. The hy-
pothesis that the true effect is harmful is there-
fore a more relevant hypothesis to reject than the 
hypothesis that the true effect is zero (the stand-
ard null). Figure 2, adapted from Lakens et al. 
(2018), shows distributions, compatibility inter-
vals and one-sided p values associated with the 
test of the hypothesis H0 that the true effect is 
harmful, for three different outcomes that could 
occur with samples. Formally, the test of the 
harmful hypothesis is a non-inferiority test, in 
which rejection of the hypothesis of inferiority 
(harm) implies the effect is non-inferior (e.g., 
Castelloe & Watts, 2015). 

 
Figure 2. Three examples of testing an hypothesis H0 that an effect (e.g., of a treatment) is 
harmful. All harmful values fall in the purple region to the left of the smallest harmful value. 
The 95% compatibility interval (95%CI) in (a) includes harmful values, so harmful values are 
compatible with the sample and model, and H0 is not rejected. H0 is only just rejected in (b), 
and in (c) it is easily rejected with a 95%CI and only just rejected with a 99%CI. P values for 
the test, pH, are evaluated for only one tail of the probability distribution.  
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Harmful values are anything to one side of the 
smallest harmful value, and since this value is 
negative in the figure, harmful values are any-
thing to the left of this value. Positive harmful 
values (e.g., a threshold blood pressure for hy-
pertension) would fall to the right of a smallest 
harmful positive value. The test of the hypothe-
sis that the effect is any harmful value belongs to 
the class of one-sided interval hypothesis tests. 
The important point about such tests is that 
harmful values are compatible with the sample 
data and model, when the compatibility interval 
includes harmful values, so the hypothesis of 
harm is rejected only when the interval does not 
include such values.  

Figure 2 shows examples of p values for the 
test, pH. The threshold pH value for rejecting the 
hypothesis is the area of the distribution on one 
tail to the left of the compatibility interval of a 
chosen level: 0.025 or 0.005 for 95% or 99% re-
spectively. These threshold or alpha values, ex-
pressed as percents, define maximum error rates 
for rejecting the hypothesis of harm, when the 
true effect is the smallest harmful, as shown in 
Figure 3 for a threshold pH value of 0.005.  

Figure 3. Sampling distributions when the true 
effect is the smallest harmful (on the left) and 
for an observed effect giving marginal rejec-
tion of the hypothesis of harm (H0), when pH = 
0.005 (on the right). Observed values result-
ing in erroneous rejection occur with a proba-
bility of 0.005: a Type-2 or failed-discovery er-
ror rate of 0.5%. 

 

The error rate is set by the researcher through 
the choice of level of compatibility interval or 
threshold p value, similar to the way the error 
rate is set for rejecting the null hypothesis in 
NHST. The error rates are independent of sam-
ple size. The error for rejecting the null is Type 
1, but here it is Type 2, since the hypothesis re-
jected is for a substantial (harmful) true effect. 
To avoid further confusion, I prefer to call the 
error a failed discovery: in making the error, the 

researcher fails to discover that the effect is 
harmful. 

When a compatibility interval overlaps harm-
ful values, the true effect could be harmful, to 
use the Bayesian interpretation of the interval. 
Furthermore, the p value for the test of harm and 
the probability that the true effect is harmful in 
MBD are defined by the sampling distribution in 
exactly the same way. In the clinical version of 
MBD, a clinically relevant effect is considered 
for implementation only when the probability 
that the true effect is harmful is <0.005 (<0.5%); 
this requirement is therefore equivalent to reject-
ing the hypothesis of harm with pH<0.005 in a 
one-sided test.  

MBD is apparently still the only approach to 
inferences or decisions in which an hypothesis 
test for harm, or equivalently the probability of 
harm, is the primary consideration in analysis 
and in sample-size estimation. An important is-
sue therefore is whether pH<0.005 represents 
sufficient evidence against the hypothesis of 
harm. To properly address this issue could in-
volve quantitative evaluation of the perceived 
and monetary cost of harm, along with the cost-
effectiveness of potential benefit arising from 
implementing the effect as a treatment in a spe-
cific setting. A threshold of 0.005 is divorced 
from consideration of costs and was chosen to 
represent most unlikely or almost certainly not 
harmful (Hopkins et al., 2009), which seems a 
realistic way to describe something expected to 
happen only once in more than 200 trials. For an-
other interpretation of low probabilities, Green-
land (2019) recommends converting p values to 
S or "surprisal" values. The S value is the num-
ber of consecutive heads in fair coin tossing that 
would have the same probability as the p value. 
The S value is given by -log2(p), and with 
pH=0.005, the value is 7.6 head tosses. Saying 
that the treatment is not compatible with harmful 
values (pH<0.005) corresponds to saying that 
there is more information against the hypothesis 
of harm than there is information against fairness 
in coin tossing when you get seven heads in a 
row (S. Greenland, personal communication).  

The only other researchers to devise a qualita-
tive scale for probabilities comparable with that 
of MBD is the Intergovernmental Panel on Cli-
mate Change (IPCC), who deem p<0.01 (i.e., 
S>6.6) to be exceptionally unlikely (Mastrandrea 
et al., 2010). With a probability threshold for 
harm of half this value, MBD is one coin toss 
more conservative.  
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MBD is also effectively more conservative 
about avoiding harm than Ken Rothman's ap-
proach to precision of estimation. In his intro-
ductory text on clinical epidemiology (Rothman, 
2012), he refers to 90% confidence intervals 
three times more often than 95% intervals, and 
he does not refer to 99% intervals at all. 
Clinical MBD and the Hypothesis of Benefit 

Making a decision about implementation of a 
treatment is more than just using a powerful test 

for rejecting the hypothesis of harm (and thereby 
ensuring a low risk of implementing a harmful 
effect, to use the Bayesian interpretation). There 
also needs to be consideration that the treatment 
could be beneficial. Once again, a one-sided test 
is involved, formally a non-superiority test, in 
which rejection of the hypothesis of superiority 
(benefit) implies the effect is non-superior 
(Castelloe & Watts, 2015). See Figure 4. 

 

Figure 4. Three examples of testing an hypothesis H0 that an effect is beneficial. All beneficial 
values fall in the orange region to the right of the smallest beneficial value. The compatibility 
interval in (a) excludes beneficial values, so H0 is rejected. H0 fails to be rejected in (b) and (c). 
Additionally, in (c) the hypothesis of non-benefit is rejected (i.e., H0 is accepted). P values for 
the test of benefit, pB, are shown in (a) and (b), and for the test of non-benefit, 1–pB, in (c). The 
level of the compatibility interval is discussed below.  

 

With the same reasoning as for the hypothesis 
of harm, a compatibility interval that falls short 
of the smallest beneficial value implies that no 
beneficial values are consistent with the data and 
model (or in the Bayesian interpretation, the 
chance that the true effect is beneficial is too 
low), so you would not implement it (Figure 4a). 
A compatibility interval that overlaps beneficial 
values allows for beneficial values to be compat-
ible with the sample and model (or for the possi-
bility that the true effect is beneficial, to give the 
Bayesian interpretation), so you cannot reject the 
hypothesis that the effect is beneficial, so it could 
be worth implementing (Figure 4b and 4c). Fig-
ures 4a and 4b show the p value for the test of 
benefit, pB. Figure 4c shows the p value for the 
test of the hypothesis that the effect is not bene-
ficial, 1 – pB: in this example, the compatibility 
interval falls entirely in the beneficial region, so 
the hypothesis of non-benefit is rejected. 

What level should the researcher choose for 
the compatibility interval and the associated 
threshold pB value in the test of the beneficial hy-
pothesis? The level 50% was chosen via the 
Bayesian interpretation of a compatibility inter-
val that just touches the beneficial region: the 

area of the tail overlapping into beneficial values 
is the probability that the true effect is beneficial, 
and a 50% compatibility interval has a one-sided 
25% tail, which was considered a lower thresh-
old for possibly beneficial. In other words, one 
should consider an effect to be possibly or poten-
tially beneficial and implementable, provided 
there is a sufficiently low risk of harm.  

A threshold or alpha pB value of 0.25 implies 
an error rate of 25% for failing to discover the 
smallest beneficial effect (which can be shown 
with a figure similar to Figure 3). While this er-
ror rate may seem high, it is comparable with the 
20% Type-2 error rate that underlies the calcula-
tion of sample size in conventional null-hypoth-
esis testing. The calculation provides a sample 
size that would give statistical significance for 
80% of studies, or a failed-discovery rate of 
20%, when the true effect is the minimum clini-
cally important difference (the smallest benefi-
cial value). 

Of course, researchers are free to specify a 
lower threshold pB to reduce the rate of failing to 
discover benefit (here, failing to reject benefit), 
but a lower error rate comes with a cost. For ex-
ample, if the threshold pB is 0.05, equivalent to 
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one tail of a 90% compatibility interval, a tail 
overlapping into the beneficial region with an 
area of only 6% is regarded as failure to reject 
the beneficial hypotheses, or from the Bayesian 
perspective, an observed quite trivial effect with 
a chance of benefit of only 6% is potentially im-
plementable. Furthermore, a trivial true effect on 
the margin of smallest important would have a 
95% rate of failure to reject the beneficial hy-
pothesis, a very high false-discovery or Type-1 
error rate (see below), assuming harm had been 
rejected.  

There is also a problem with requiring a high 
chance of benefit for implementation, as shown 
in Figure 4c, which depicts a test resulting in re-
jection of the hypothesis that the effect is not 
beneficial. This is the approach of superiority or 
minimum-effects testing (MET), promoted by 
researchers who would prefer to reject an hy-
pothesis of non-benefit rather than failure to re-
ject the hypothesis of benefit (e.g., Lakens et al., 
2018). If the threshold p value for this test is 0.05 
(for a one-sided 90% interval), a smallest im-
portant beneficial effect would be implemented 
only 5% of the time (a failed-discovery or Type-
2 error rate of 95%), regardless of the sample 
size! In an attempt to address this problem, the 
sample size in MET is chosen to give a low 
failed-discovery rate for an "expected" true ef-
fect somewhat greater than the smallest im-
portant. For example, with a p-value threshold of 
0.05 for rejecting the hypothesis of non-benefit, 
a simple consideration of sampling distributions 
similar to those in Figure 3 shows that the mini-
mum desirable sample size for MBD would give 
a failed-discovery rate of 50% for a true effect 
that is 2× the smallest important, but the rate is 
only 5% for a true effect that is 3× the smallest 
important, which is borderline small-moderate in 
all my magnitude scales (Hopkins, 2010). The 
minimum desirable sample size in MBD should 
therefore satisfy those who promote sample-size 
estimation for MET. In any case, and regardless 
of sample size, the hypothesis test underlying 
MET is automatically available in MBD, as ex-
plained below. 
Hypotheses for Non-Clinical MBD 

I have presented the clinical version of MBD 
above as two one-sided hypothesis tests. The 
tests for harm and benefit have to differ in their 
respective threshold p values, because it is ethi-
cally more important to avoid implementing a 
harmful effect than to fail to implement a bene-
ficial effect. The non-clinical version of MBD 

can also be recast as one-sided tests, but now the 
threshold p values are the same, because reject-
ing the hypothesis of a substantial negative effect 
is just as important as rejecting the hypothesis of 
a substantial positive effect. A p value of 0.05, 
corresponding to one tail of a 90% compatibility 
interval, was chosen originally for its Bayesian 
interpretation: rejection of the hypothesis of one 
of the substantial magnitudes corresponds to a 
chance of <5% that the true effect has that sub-
stantial magnitude, which is interpreted as very 
unlikely.  

As already noted, Ken Rothman uses the 90% 
level for confidence intervals three times more 
frequently than the 95% level, so in this respect 
non-clinical MBD is similar to his approach. 
Geoff Cumming, the other researcher interpret-
ing confidence intervals in terms of precision of 
estimation, uses the 95% level as a default 
(Cumming, 2014), so his approach is more con-
servative than non-clinical MBD. 
Combining the Hypotheses 

An unclear outcome in non-clinical and clini-
cal MBD corresponds to failure to reject both hy-
potheses of substantiveness: the relevant com-
patibility intervals span both smallest important 
values. The Bayesian interpretation of an unclear 
clinical effect is that the true effect could be ben-
eficial and harmful, while an unclear non-clini-
cal effect could be substantially positive and 
negative. The interpretation of could depends on 
the relevant threshold p values: MBD defines 
could be harmful to mean pH>0.005, so the risk 
of harm is at least very unlikely; could be bene-
ficial means pB>0.25, so the chance of benefit is 
at least possibly; could be substantial means 
p+>0.05 and p–>0.05, or chances of both magni-
tudes are at least unlikely.  

When the true value of an effect is substantial 
of a given sign, the outcome consistent with this 
effect is failure to reject the hypothesis of that 
sign and rejection of the hypothesis of opposite 
sign. A feature of MBD is the level of evidence 
it conveys for the hypothesis that could not be 
rejected. For example, if the hypothesis of bene-
fit is not rejected (and harm is rejected), the ef-
fect is reported with the probabilistic terms pos-
sibly, likely, very likely or most likely preceding 
beneficial. Each of these Bayesian terms has an 
equivalent p-value threshold for testing an hy-
pothesis that the effect is not beneficial: <0.75, 
<0.25, <0.05 and <0.005 respectively, and with 
a p value pNB = 1 – pB. The red shaded area in 
Figure 4c illustrates a pNB value of about 0.04, 
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resulting in rejection of the non-beneficial hy-
pothesis (pNB<0.05), and corresponding to very 
likely beneficial. This outcome is equivalent to a 
superiority or minimum-effects test in which the 
non-superiority hypothesis has been rejected at 
the 0.05 level. If the highest threshold for this 
test in MBD (pNB<0.75) seems to represent un-
acceptably weak evidence, keep in mind that it is 
equivalent to failure to reject benefit at the 0.25 
threshold (pB>0.25). This weak level of evidence 
of benefit is captured appropriately by possibly 
(or, as discussed below, ambiguously). Even so, 
a practitioner could decide to implement a treat-
ment with this level of evidence, given a suffi-
ciently low risk of harm, but additional consid-
erations are representativeness of the sample, va-
lidity of the measures, accuracy of the statistical 
model, cost of implementation, individual differ-
ences in the response to the treatment, and risk 
of side effects.  

For clear effects that are possibly trivial and 
possibly substantial (including beneficial or 
harmful), I suggest presenting the effect as pos-
sibly substantial, regardless of which probability 
is greater, although stating that the effect is also 
possibly trivial would emphasize the uncer-
tainty. Effects with adequate precision that are at 
least likely trivial can be presented as such in ta-
bles of results, without mention of the fact that 
one of the substantial magnitudes is unlikely 
while the other is at least very unlikely. 

Rejection of both substantial hypotheses im-
plies a decisively trivial effect, which occurs 
when the compatibility interval is contained en-
tirely within the trivial range of values. In non-
clinical MBD with a 90% interval, this scenario 
represents an equivalence test, with the non-
equivalence hypothesis rejected at the 0.05 level. 
Thus MBD also includes equivalence testing. A 
minor point here is that a decisively trivial effect 
can sometimes be likely trivial; for example, a 
90%CI falling entirely in the trivial region, with 
p– = 0.03 and p+= 0.04, implies pT = 1 – (p– + p+) 
= 0.93, which is likely trivial. Very likely trivial 
effects are, of course, always decisively trivial. 
In clinical MBD rejection of the beneficial hy-
pothesis (pB<0.25) and harmful hypothesis 
(pH<0.005) can result in a clear effect reported as 
possibly trivial, which should not be regarded as 
decisively trivial.  
Sample-size Estimation 

A substantial rate of unclear outcomes with a 
small sample size is ethically problematic, since 
a study should be performed only if there is a 

publishable quantum, regardless of the true mag-
nitude of the effect. For this reason, an interval 
that just fits the trivial region is the basis for min-
imum desirable sample-size estimation in MBD 
(Hopkins, 2006): a sample size any smaller pro-
duces a wider interval that could overlap both 
substantial regions, resulting in failure to reject 
both hypotheses and therefore an unclear out-
come. In frequentist terms, marginal rejection of 
both substantial hypotheses is the basis of esti-
mation of the minimum desirable sample size in 
MBD. Equally, the MBD sample size ensures a 
low error rate represented by deciding that a true 
marginally substantial effect of a given sign 
could be substantial of the other sign. For a mar-
ginally harmful true effect, the error rate is 0.5% 
for deciding that the true effect could be benefi-
cial (failure to reject the beneficial hypothesis, 
with pB>0.25); for a marginally substantial neg-
ative true effect, the error rate is 5% for deciding 
that the true effect could be substantially positive 
(failure to reject the substantial positive hypoth-
esis, with p+>0.05).  

Aisbett et al. (2020) have suggested sample-
size estimation based on minimal-effects (supe-
riority) testing (MET) or equivalence testing 
(ET). I have already shown above that the MBD 
sample size is consistent with that of MET for 
the reasonable expectation of a marginally 
small-moderate effect, so there is no need to re-
place the MBD sample size with a MET sample 
size. In ET, the researcher needs a sample size 
that will deliver a decisively trivial outcome (by 
rejection of the non-trivial hypothesis), if the 
true effect is trivial. As in MET, the researcher 
posits an expected value of the true effect, but 
now the value has to be somewhat less than the 
smallest important. Unfortunately, the resulting 
ET sample size turns out to be impractical: if the 
researcher posits (unrealistically) an expected 
true effect of exactly zero, a simple considera-
tion of sampling distributions similar to those in 
Figure 3 shows that the sample size needs to be 
4× that of MBD to deliver a decisively trivial 
outcome. A more realistic expected trivial effect 
midway between zero and the smallest important 
requires a sample size 16× that of MBD. Such 
large sample sizes are rarely achievable, and in 
any case, justification of an expected trivial true 
effect seems to me to be arbitrary and problem-
atic. Showing that an effect is decisively trivial 
must therefore be left to a meta-analysis of many 
studies, and even then the effect may not be de-
cisively trivial or substantial, if it falls close to 
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the smallest important. I therefore see no need 
for a new method of sample-size estimation for 
MBD, but I have updated my article (Hopkins, 
2020) and spreadsheet for sample-size estima-
tion to include MET and ET. 
New Terminology 

For researchers who dispute or wish to avoid 
the Bayesian interpretation of evidence for or 
against magnitudes in MBD, frequentist terms 
have been suggested, corresponding to p-value 
thresholds for rejection of the one-sided hypoth-
esis tests: most unlikely, very unlikely, unlikely, 
and possibly correspond to rejection of an hy-
pothesis with p<0.005, <0.05, <0.25, and <0.75 
(or failure to reject at the 0.25 level, i.e., p>0.25), 
which are deemed to represent strong, moderate, 
weak, and ambiguous rejection, respectively 
(Aisbett et al., 2020). The Bayesian terms de-
scribing an effect as being possibly, likely, very 
likely, and most likely a certain magnitude corre-
spond to rejection of the hypothesis that the ef-
fect does not have that magnitude with p<0.75 
(or failure to reject, p>0.25), <0.25, <0.05 and 
<0.005, which are deemed to represent ambigu-
ous, weak, moderate and strong compatibility of 
the data and model with the magnitude. 

Greenland favors the frequentist terminology, 
including the use of compatibility interval rather 
than confidence or uncertainty interval, because 
"the 'compatibility' label offers no false confi-
dence and no implication of complete uncer-
tainty accounting" (Gelman & Greenland, 2019). 
Whatever the terminology, researchers should 
always be aware of Greenland's cautions that de-
cisions about the magnitude of an effect are 
based on assumptions about the accuracy of the 
statistical model, validity of the measures, and 
the representativeness of the sample. Practition-
ers should also be careful not to confuse a deci-
sion about the magnitude of the mean effect of a 
treatment with the magnitude in individuals, 
who may have responses to the treatment that 
differ substantially from the mean. Failure to ac-
count for individual responses in the analysis of 
the mean effect would itself represent a violation 
of the assumption of accuracy of the statistical 
model. 

Use of the term unclear seems justified when 
neither hypothesis is rejected. Indecisive and in-
conclusive are also reasonable synonyms. Ef-
fects otherwise have adequate precision or ac-
ceptable uncertainty and are potentially publish-
able, to the extent that rejection of an hypothesis 
represents a quantum of Popperian evidence. 

However, use of the term clear to describe such 
effects may be responsible in part for misuse of 
MBI, whereby researchers omit the probabilistic 
term describing the magnitude and present it as 
if it is definitive (Lohse et al., 2020; Sainani et 
al., 2019). An effect that is clear and only possi-
bly substantial is obviously not clearly substan-
tial. Researchers must therefore be careful to dis-
tinguish between clear effects and clear magni-
tudes: they should refer to a clear effect as being 
clearly substantial or clearly trivial, when the ef-
fect is very likely or most likely substantial or 
trivial (moderately or strongly compatible with 
substantial or trivial). This use of clearly (or de-
cisively or conclusively) for substantial magni-
tudes is consistent with the definition of Type-1 
errors in non-clinical MBD. 
Type-1 Errors in MBD 

To clarify the meaning of Type-1 error, I use 
the term to refer to a false positive or false dis-
covery: the researcher makes a false discovery of 
a substantial effect. In NHST a Type-1 error oc-
curs when a truly null effect is declared signifi-
cant. Since significant is interpreted as substan-
tial, at least for the pre-planned sample size, the 
definition was broadened to include any truly 
trivial effect that is declared to be substantial 
(Hopkins & Batterham, 2016). This new defini-
tion allows an equitable comparison of Type-1 
rates in MBD with those in NHST.  

In clinical MBD, failure to reject the hypoth-
esis of benefit is regarded as sufficient evidence 
to implement the effect. A Type-1 error therefore 
occurs, if the true magnitude of the effect is triv-
ial. With a threshold p value of 0.25, Type-1 er-
ror rates approach 75% for trivial true effects 
that are just below the smallest beneficial value, 
depending on sample size (Hopkins & 
Batterham, 2016). For comparison, Type-1 error 
rates with conventional NHST approach 80% for 
such marginally trivial true effects, when sample 
size approaches that for 80% power and 5% sig-
nificance (Hopkins & Batterham, 2016); for 
greater sample sizes the error rate exceeds 80% 
for conventional NHST but levels off at 50% for 
conservative NHST. 

NHST fares better than clinical MBD when 
the effect is truly null, because the NHST Type-
1 error rate for such effects is fixed at 5%, 
whereas the rate in MBD is not fixed and can be 
as high as 17%, depending on the sample size 
(Hopkins & Batterham, 2016). The majority of 
these errors occur as only possibly or likely ben-
eficial, so the practitioner opting to implement 
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the effect should be in no doubt about the modest 
level of evidence for the effect being beneficial 
(Hopkins & Batterham, 2016). 

The Type-1 error rates are even higher in the 
less conservative odds-ratio version of clinical 
MBD, according to which an unclear effect is de-
clared potentially implementable, if there is a 
sufficiently high chance of benefit compared 
with the risk of harm (an odds ratio of benefit to 
harm greater than a threshold value of 66, de-
rived from the odds for marginally beneficial and 
marginally harmful). Again, the errors occur 
mainly as possibly or likely beneficial (Hopkins 
& Batterham, 2016), but the practitioner needs to 
take into consideration loss of control of the er-
ror in rejecting the harmful hypothesis and there-
fore the increased risk of implementing a harm-
ful effect. 

In non-clinical MBD, a Type-1 error occurs 
when the true effect is trivial and the 90% com-
patibility interval falls entirely outside trivial 
values (Hopkins & Batterham, 2016): a clearly 
substantial effect in the new terminology. The 
equivalent frequentist interpretation of this dis-
position of the compatibility interval is rejection 
of the hypothesis that the effect is not substan-
tially positive (say), with p<0.05. Rejection of 
this hypothesis automatically entails rejection of 
the hypothesis that the effect is trivial, because 
"not substantially positive" includes all trivial 
values. The Type-1 error rate in the worst case 
of a marginally trivial-positive true effect is at 
least 5%, because there is a small contribution to 
the error rate from compatibility intervals that 
fall entirely in the range of substantial negative 
values. Simulations with the smallest of three 
sample sizes (10+10) in a controlled trial showed 
that the error rate did not exceed 5% (Hopkins & 
Batterham, 2016). These simulations were per-
formed for standardized effects using the sample 
SD to standardize, and the resulting compatibil-
ity intervals for deciding outcomes were based 
on the t distribution and therefore were only ap-
proximate. I have now repeated the simulations 
using the population SD to simulate a smallest 
important effect free of sampling error; I ob-
tained a Type-1 error rate of 5.8% for a sample 
size of 10+10 (and 6.6% for a sample size of 
5+5). These error rates are obviously acceptable. 

It is important to reiterate here that an error 
occurs in hypothesis testing only when an hy-
pothesis is rejected erroneously. As already 
noted, in NHST a Type-1 error occurs if the true 
effect is zero and the null-hypothesis is rejected. 

Similarly, in non-clinical MBD a Type-1 error 
occurs if the true effect is trivial and the trivial 
hypothesis is rejected. Rejection of the trivial hy-
pothesis occurs when the compatibility interval 
covers only substantial values, the correspond-
ing Bayesian interpretation being that the true ef-
fect is very likely substantial. Therefore possibly 
substantial or likely substantial outcomes, be 
they publishable or unclear, represent failure to 
reject the trivial hypothesis and therefore do not 
incur a Type-1 error, a crucial point that the de-
tractors of MBI have not acknowledged 
(Sainani, 2018, 2019; Sainani et al., 2019; Welsh 
& Knight, 2015).  

Janet Aisbett (personal communication) sug-
gested that "an error of sorts also occurs when 
you fail to reject a hypothesis that you should 
have." In other words, the outcome with a truly 
substantial effect should be rejection of the non-
substantial hypothesis, and if you fail to reject 
that hypothesis, you have made an error. A sim-
ilar error occurs with failure to reject the non-
trivial hypothesis, when the true effect is trivial. 
Janet's suggestion is just another way of justify-
ing sample size with MET or ET, which I have 
already dealt with. 

It is also important to emphasize that there is 
no substantial upward publication bias, if the cri-
terion for publication of effects with MBI is re-
jection of at least one hypothesis, even with quite 
small sample sizes (Hopkins & Batterham, 
2016). It follows that MBD offers researchers 
the opportunity to publish their small-scale stud-
ies without compromising the literature. MBD 
actually benefits the literature, because several 
small-scale studies add up to a large study in a 
meta-analysis. These assertions do not amount to 
an endorsement of such studies; researchers 
should obviously aim for sample sizes that will 
avoid unclear outcomes. 
Lower P-value Thresholds? 

The non-clinical p-value threshold of 0.05 for 
testing the hypothesis of a true substantial effect 
seems to be an appropriate threshold for very un-
likely, when considered as one event in 20 trials. 
In terms of S values, 0.05 seems less conserva-
tive, because it represents only a little more than 
four heads in a row when tossing a coin. Would 
a lower p value threshold and consequent lower 
error rates for non-clinical effects be more ap-
propriate?  

One of the advantages of retaining 0.05 is that 
the resulting estimates of sample size for non-
clinical effects are practically the same as for 
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clinical effects (Hopkins, 2006). If this threshold 
were revised downward, non-clinical sample 
size would be greater, which seems unreasona-
ble, so the probability thresholds in clinical 
MBD would also need revising downwards. For 
example, if all the p-value thresholds were 
halved, their S values would move up by one 
coin toss. For non-clinical MBI very unlikely 
(0.05 or 5%) would become 0.025 or 2.5% (S = 
5.3). For clinical MBI most unlikely (0.005 or 
0.5%) would become 0.0025 or 0.25%, and pos-
sibly (0.25 or 25%) would become 0.125 or 
12.5% (S = 8.6 and 3.0). Sample size for clinical 
and non-clinical MBD would still be practically 
the same, but they would rise from the existing 
approximately one-third to about one-half those 
of NHST for 5% significance and 80% power. A 
lower p-value threshold for non-clinical effects 
would reduce the Type-1 error rates for such ef-
fects, but a lower pB would increase the Type-1 
rates for deciding that trivial true effects could 
be beneficial. Lower p values require bigger ef-
fects for a given sample size, so there could be a 
risk of substantial bias for publishable effects 
with lower threshold p values, when the sample 
size is small. Unclear effects would also be more 
common and therefore less publishable with 
some of the unavoidably small sample sizes in 
sport and exercise science. On balance, I recom-
mend keeping the existing probability thresh-
olds. 
A Practical Application of MBD 

A colleague who is skeptical about claims of 
performance enhancement with the substances 
banned by the International Olympic Committee 
recently asked me to evaluate an article reporting 
the results of a placebo-controlled trial of the ef-
fects of injections of recombinant human eryth-
ropoietin (rHuEPO) on performance of cyclists 
(Heuberger et al., 2017). The authors concluded 
that "although rHuEPO treatment improved a la-
boratory test of maximal exercise, the more clin-
ically relevant submaximal exercise test perfor-
mance and road race performance were not af-
fected." The net effect of rHuEPO on mean 
power in the submaximal test (a 45-min trial) 
was presented as 5.9 W (95%CI -0.9 to 12.7 W, 
p=0·086), so their conclusion about performance 
in this test was based presumably on what ap-
peared to be a negligible increase in mean power 
and, of course, statistical non-significance, along 
with the claim that their study was "adequately 
powered".  

Effects on endurance performance are best ex-
pressed in percent units, and for elite cyclists the 
smallest important change in mean power in 
time-trial races (defined as winning an extra 
medal in every 10 races on average) is 1.0% 
(Malcata & Hopkins, 2014). I calculated the net 
effect on power in the submaximal time trial as 
1.1%. When I inserted these values into the fre-
quentist and Bayesian versions of the spread-
sheet for converting a p value to MBD (Hopkins, 
2007), the 90%CI was 0.1 to 2.1%, and the non-
clinical decision was a small, possibly (or am-
biguously) positive effect (p+ = 0.54, p– = 0.001). 
The effect was also potentially implementable 
(possible benefit with really low risk of harm), 
but a clinical decision would be relevant only for 
someone considering implementation for an ad-
vantage in competitions, which is not an issue 
here.  

The road-race performance was measured 
only once for each cyclist, after the period of ad-
ministration of rHuEPO. The authors presented 
the difference in the mean race time of the two 
groups in percent units, but without time in a pre-
intervention race for comparison, the uncertainty 
accommodates huge negative and positive ef-
fects (0.3%, 95%CI -8.3 to 9.6%).  

The conclusion that the submaximal test and 
road race performance were not affected by in-
jections of rHuEPO is obviously not tenable. The 
researchers assumed that non-significance im-
plies no real effect, which is a reasonable as-
sumption with the right sample size. Unfortu-
nately their approach to estimating sample size 
left the study underpowered for the submaximal 
test (as shown by non-significance for an ob-
served substantial effect) and grossly underpow-
ered for road race performance (as shown by 
huge compatibility limits). Use of MBD leads to 
a realistic conclusion about the uncertainty in the 
magnitude of the effects. 
Conclusion 

If researchers heed the recent call to retire sta-
tistical significance (Amrhein et al., 2019), they 
will need some other hypothesis-based inferen-
tial method to make decisions about effects, es-
pecially in clinical or practical settings. I have 
shown that the reference-Bayesian probability 
thresholds in the magnitude-based decision 
method are p-value thresholds for rejecting hy-
potheses about substantial magnitudes, which 
are assuredly more relevant to real-world out-
comes than the null hypothesis. Researchers can 
therefore make magnitude-based decisions about 



Hopkins: MBD as Hypothesis Tests Page 12 

 Sportscience 24, 1-18, 2020 

effects in samples, confident that the decisions 
have a sound frequentist theoretical basis and ac-
ceptable error rates. I recommend continued use 
of the probabilistic terms possibly, likely, and so 
on to describe magnitudes of clear, decisive or 
conclusive effects (those with acceptable uncer-
tainty), since these terms can be justified with ei-
ther reference-Bayesian analyses or hypothesis 
tests, and they convey uncertainty in an accessi-
ble manner. The terms clearly, decisively or con-
clusively should be reserved for magnitudes that 
are very likely or most likely trivial or substan-
tial: those with moderate or strong compatibility 
with the magnitude. 
Acknowledgements: I thank Janet Aisbett for im-
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Appendix: Reporting MBD in Journals 

In the section of a manuscript dealing with sta-
tistical analysis, there should first be a descrip-
tion of the model or models providing the effect 
statistics. This description should include char-
acterization of the dependent variable, any trans-
formation that was used for the analysis, and the 
predictors in the model. For mixed models, the 
random effects and their structure should be de-
scribed. There should be some attention to the 
issue of uniformity of effects and errors in the 
model. If a published spreadsheet was used for 
the analysis, cite the most recent article accom-
panying the spreadsheet. 

Following the description of the statistical 
model, there is a section on the MBD method 
that will depend on whether the journal requires 
hypothesis testing or accepts instead, or as well, 
a Bayesian analysis. Journals should be more 
willing to accept the original Bayesian version of 
MBD, now that it is clear that MBD is isomor-
phic with an acceptable frequentist version. Sug-
gested texts for this section are provided below, 
preceded by advice on presentation of results of 
MBD analyses.  

A final paragraph on statistical analysis can 
deal with evaluation of observed magnitudes. 

Suggested text for this paragraph, which is the 
same for both kinds of journal, is also provided 
below. 
Journals requiring hypothesis testing 

The editor should be satisfied if the p value for 
the usual null-hypothesis test is replaced by the 
p values for the one-sided tests of substantial 
magnitudes. Report the p values to three decimal 
places if ≥0.995 (e.g., 0.997), to two decimal 
places if ≥0.10 (e.g., 0.63), and with one signifi-
cant digit if <0.10 (e.g., 0.003). Do not report the 
p values as inequalities.  

For clinical effects, the p values for the hy-
potheses of harm and benefit could be presented 
as pH and pB. The p values for non-clinical ef-
fects that have negative and positive smallest im-
portant values could be p– and p+, whereas p↓ and 
p↑ could be used for factor effects derived via log 
transformation. These p values should be accom-
panied by the observed effect, the compatibility 
interval or limits (preferably 90%), and a quali-
tative description of the observed magnitude 
(small, moderate, etc.). Inclusion of the term un-
clear is appropriate when both hypotheses are 
not rejected. The term clear can be used to de-
scribe effects when at least one hypothesis has 
been rejected. Clear or clearly can also be used 
to describe the magnitude of a clear effect (sub-
stantial or trivial), provided the p value for that 
magnitude is >0.95; for example, "there was a 
moderate clear reduction in risk of injury (hazard 
ratio 0.63, 90%CI 0.46 to 0.86, pH=0.002, 
pB=0.97)." The pB of 0.97 in this example has a 
frequentist interpretation of moderately compat-
ible with benefit, which could be included for ed-
itors who require strictly frequentist reporting; 
the Bayesian interpretation of very likely benefi-
cial could be included or replace pB for editors 
who are comfortable with non-informative or 
weakly informative priors. If you or the editor 
want an informative prior, the probabilities of 
the true magnitudes will differ from the p values. 
In tables, show a column headed by pH/pT/pB (or 
p–/pT/p+, or p↓/pT/p↑), with values such as 
0.03/0.05/0.92. To save numeric clutter in a table 
and highlight evidence for magnitudes, clear ef-
fects (those with acceptable uncertainty) can be 
indicated by using the asterisk and superscript 0 
system described below for Bayesian reporting, 
with the Bayesian terms replaced by the fre-
quentist compatibility terms. Decode the aster-
isks and superscripts in the table's footnote.  

Methods section for a strictly frequentist 
journal. Uncertainty in the estimates of effects 
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is presented as 90% compatibility intervals [or 
limits]. Decisions about magnitudes accounting 
for the uncertainty were based on hypothesis 
tests for substantial and trivial effects (reference: 
this article and/or Aisbett et al., 2020). For clin-
ically or practically relevant effects (which could 
result in implementation of a treatment), hypoth-
eses of harm and benefit were rejected if the re-
spective p values (pH and pB) were less than 
0.005 and 0.25 (strong and weak rejection, re-
spectively). For all other effects, hypotheses of 
substantial decrease and increase were rejected 
if their respective p values (p– and p+, or for fac-
tor effects, p↓ and p↑) were less than 0.05 (mod-
erate rejection). If only one hypothesis was re-
jected, the effect is described as being ambigu-
ously, weakly, moderately or strongly compati-
ble with the other magnitude when the p value 
for the test of that magnitude was >0.25, >0.75, 
>0.95 and >0.995, respectively. 

The p values for the above tests were areas of 
the sampling distribution of the effect statistic to 
the left or right of the smallest important value 
(the trivial-small threshold) [and were provided 
by the Sportscience spreadsheet in percent units 
as chances of benefit and harm, or substantially 
positive and negative]. Effects with at least one 
substantial hypothesis rejected and at least 
weakly compatible evidence with trivial magni-
tudes (pT >0.75) are presented as such, where pT 
is the p value for the test of the trivial hypothesis 
(the area of the sampling distribution covering 
trivial values). When the p value for the test of a 
substantial or trivial magnitude was >0.95, the 
magnitude is described as clear. The sampling 
distribution was assumed to be a t distribution 
for effects derived from a continuous dependent 
variable, or a z distribution for effects derived 
from counts or events [modify this sentence for 
your study]. Where the model providing the ef-
fects involved a log or other transformation, the 
smallest important value was also transformed 
for evaluation of the p values. 

P-value thresholds for rejecting the main pre-
planned hypothesis in this study [describe it] 
were not adjusted for the inflation of error that 
occurs with multiple inferences. For the remain-
ing tests, thresholds were divided by n [state it; a 
default for study with many effects could be 10], 
to give a Bonferroni-type correction equivalent 
to n independent tests. Effects with hypotheses 
thus rejected are highlighted in bold in tables 
and figures; to reduce inflation of error, interpre-
tation of outcomes is focused on these effects. 

Minimum desirable sample size was esti-
mated for Type-2 (failed-discovery) error rates 
set by the p-value thresholds (0.5% and 25% for 
smallest important harmful and beneficial clini-
cal effects respectively; 5% for substantial nega-
tive and positive non-clinical effects) using a 
spreadsheet (Hopkins, 2006). [Use smaller error 
rates where relevant for multiple inferences.] Er-
ror of measurement [for sample-size estimation 
of controlled trials and crossovers] was esti-
mated from previously published similar studies 
[state references for the studies] using the panel 
of cells for that purpose in the spreadsheet. 

Methods section incorporating hypothesis 
tests and Bayesian analysis. Uncertainty in the 
estimates of effects is presented as 90% compat-
ibility intervals [or limits]. Decisions about mag-
nitudes accounting for the uncertainty were 
based on hypothesis tests for substantial and triv-
ial effects (reference: this article and/or Aisbett 
et al., 2020). For clinically or practically relevant 
effects (which could result in implementation of 
a treatment), hypotheses of harm and benefit 
were rejected if the respective p values (pH and 
pB) were less than 0.005 and 0.25 (strong and 
weak rejection, respectively). For all other ef-
fects, hypotheses of substantial decrease and in-
crease were rejected if their respective p values 
(p– and p+, or for factor effects, p↓ and p↑) were 
less than 0.05 (moderate rejection). If only one 
hypothesis was rejected, the p value for the other 
hypothesis corresponds to the posterior probabil-
ity of the magnitude of the true (large-sample) 
effect in a reference-Bayesian analysis with a 
minimally or weakly informative prior 
(Hopkins, 2019b), so it was interpreted with the 
following scale: >0.25, possibly; >0.75, likely; 
>0.95, very likely; >0.995, most likely (Hopkins 
et al., 2009). [Provide additional text here if an 
informative prior was used, or if the sample size 
was so small that a weakly informative prior 
modified the magnitude-based decision; state 
that the modified decision is presented (Hopkins, 
2019b).] If neither hypothesis was rejected, the 
effect is described as unclear, with the exception 
of effects with an odds ratio of benefit to harm 
>66, which were considered clear and poten-
tially implementable. 

The p values for the above tests were areas of 
the sampling distribution of the effect statistic to 
the left or right of the smallest important value 
(the trivial-small threshold) [and were provided 
by the Sportscience spreadsheet in percent units 
as chances of benefit and harm, or substantially 
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positive and negative]. Effects with at least one 
substantial hypothesis rejected and at least likely 
trivial magnitudes (pT >0.75) were presented as 
such, where pT was the p value for the test of the 
trivial hypothesis (the area of the sampling dis-
tribution covering trivial values). When the p 
value for the test of a substantial or trivial mag-
nitude was >0.95, the magnitude is described as 
clear. The sampling distribution was assumed to 
be a t distribution for effects derived from a con-
tinuous dependent variable, or a z distribution 
for effects derived from counts or events [mod-
ify this sentence for your study]. Where the 
model providing the effects involved a log or 
other transformation, the smallest important 
value was also transformed for evaluation of the 
p values. 

Include here the two paragraphs on adjust-
ment for multiple inferences and sample-size es-
timation described above for a strictly fre-
quentist journal. 
Journals accepting Bayesian analysis 

If you opt for informative priors, be sure to 
justify them and to show the point estimate, com-
patibility interval and MBD before and after ap-
plication of the prior for the most important ef-
fects. Unclear effects should be presented with-
out a probabilistic term, but otherwise show pos-
sibly, likely, and so on, usually after the observed 
magnitude. Examples: small unclear harmful; 
moderate likely beneficial; large very likely sub-
stantial increase; possibly trivial-small positive 
(if trivial and substantial positive are both possi-
ble). Clear or decisive can be used to describe 
such effects, but refer to clearly substantial or 
clearly trivial only for very likely or most likely 
substantial or trivial. Examples: clearly trivial; a 
large clear increase. To save space in a table, 
substantial effects can be indicated with ↓ or ↑, 
and the probabilistic terms for substantial effects 
can be replaced (with an appropriate explanatory 
footnote) by *, **, ***, and **** for possibly, 
likely, very likely, and most likely substantial; 
for trivial effects, use 0, 00, 000, and 0000. Exam-
ples: large↓****; small↑**; trivial00; small↑ (for 
an observed small but unclear increase). A pos-
sibly trivial possibly substantial effect can be in-
dicated accordingly, to emphasize the uncer-
tainty. Examples: trivial0↓* (if the observed ef-
fect was trivial, possibly trivial and possibly neg-
ative); small↓*,0 (if the observed effect was 
small, possibly negative and possibly trivial). 

Methods section. Uncertainty in the esti-

mates of effects is presented as 90% compatibil-
ity intervals [or limits]. Decisions about magni-
tudes accounting for the uncertainty were based 
on a reference-Bayesian analysis with a mini-
mally informative prior (Hopkins, 2019a; 
Hopkins & Batterham, 2016; Hopkins & 
Batterham, 2018), which provided estimates of 
chances that the true magnitude was harmful, 
trivial and beneficial (for clinically or practically 
relevant effects, which could result in implemen-
tation of a treatment), or chances that the true 
magnitude was a substantial decrease or negative 
value, a trivial value, and a substantial increase 
or positive value (for all other effects). [Provide 
additional text here if an informative prior was 
used, or if the sample size was so small that a 
weakly informative prior modified the magni-
tude-based decision; state that the modified de-
cision is presented, with the chances from the 
posterior distribution (Hopkins, 2019b).] Clini-
cally relevant effects were deemed clear (had ad-
equate precision) if the risk of harm was <0.5%, 
or the chances of benefit were <25%, or the odds 
ratio of benefit to harm was >66; non-clinical ef-
fects had adequate precision if the chances of 
one or other substantial true value were <5% (the 
90% compatibility interval did not include sub-
stantial positive and negative values). Clear ef-
fects are reported with a qualitative descriptor 
for the magnitudes with chances that are >25% 
using the following scale: >0.25, possibly; 
>0.75, likely; >0.95, very likely; >0.995, most 
likely (Hopkins et al., 2009). When the chances 
of a substantial or trivial magnitude were >95%, 
the magnitude itself is described as clear. Effects 
with inadequate precision are described as un-
clear. [If you make ~10 or more decisions about 
magnitudes, and you do not opt for the exact 
Bonferroni correction for inflation of error de-
scribed below, make the following statement 
here.] Effects with adequate precision defined by 
99% compatibility intervals are highlighted in 
bold in tables and figures; the overall error rate 
for coverage of 10 independent true values with 
such intervals is that of a single effect with a 
90%CI (10%), and interpretation of outcomes is 
focused on these effects. 

The chances of substantial and trivial magni-
tudes of the true effect were the percent areas of 
the sampling distribution of the effect statistic to 
the left or right of the smallest important value 
(the trivial-small threshold). The sampling distri-
bution was assumed to be a t distribution for ef-
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fects derived from a continuous dependent vari-
able, or a z distribution for effects derived from 
counts or events [modify this sentence for your 
study]. Where the model providing the effects 
involved a log or other transformation, the small-
est important value was also transformed for 
evaluation of the chances of magnitudes. 

The threshold chances of substantial magni-
tudes for deciding adequate precision of the 
magnitude of the main pre-planned effect in this 
study [describe it] were not adjusted for inflation 
of error that occurs with multiple decisions. For 
all other decisions, threshold chances were di-
vided by n [state it], to give a Bonferroni correc-
tion equivalent to n independent decisions. Ef-
fects with adequate precision following correc-
tion are highlighted in bold in tables and figures; 
to reduce inflation of error, interpretation of out-
comes is focused on these effects. 

Minimum desirable sample size was esti-
mated for adequate precision in the limiting 
cases of maximum acceptable risk of harm for 
minimum acceptable chance of benefit (0.5% 
and 25% for smallest important harmful and ben-
eficial clinical effects respectively) and maxi-
mum acceptable chance of substantial negative 
and positive non-clinical effects (5% for smallest 
important negative and positive) using a spread-
sheet (Hopkins, 2006). [Use smaller values 
where relevant for multiple inferences.] Error of 
measurement [for sample-size estimation of con-
trolled trials and cross-overs] was estimated 
from previously published similar studies [state 
references for the studies] using the panel of 
cells for that purpose in the spreadsheet. 
Magnitude scales for all journals 

Here is suggested text for a paragraph on 
scales for assessing magnitudes. Delete the in-
formation about scales that are not in your 
study… All effects are presented with the quali-
tative magnitude of their observed (sample) 
value, evaluated with the following scales for 
trivial, small, moderate, large, very large and ex-
tremely large respectively (Hopkins et al., 2009): 

for effects with no known relationship to perfor-
mance, wealth or health, standardized thresholds 
given by <0.2, ≥0.2, ≥0.6, ≥1.2, ≥2.0, and ≥4.0 
times the appropriate between-subject standard 
deviation [which you will have to describe in the 
section devoted to the modeling]; Pearson corre-
lation coefficients of <0.1, ≥0.1, ≥0.3, ≥0.5, 
≥0.7, and ≥0.9, corresponding to these standard-
ized thresholds; for effects on or directly related 
to competitive performance times or distances, 
an increase or decrease of <0.3, ≥0.3, ≥0.9, ≥1.6, 
≥2.5, and ≥4.0 times the within-athlete variabil-
ity of performance between major competitions 
(analyzed as percent effects via log transfor-
mation) [you will have to state this value and cite 
a publication for it]; for individual or team match 
performance, <1, ≥1, ≥3, ≥5, ≥7, and ≥9 extra 
wins or losses in every 10 matches with an oth-
erwise evenly matched opponent (analyzed via 
logistic models); for effects on injury or other 
morbidity or mortality prevalence or incidence, 
on counts, or on wealth, factor decreases of >0.9, 
≤0.9, ≤0.7, ≤0.5, ≤0.3, and ≤0.1, and factor in-
creases represented by their reciprocals, <1.11, 
≥1.11, ≥1.43, ≥2.0, ≥3.3, and ≥10. To evaluate 
magnitudes of standard deviations representing 
variability in an effect (individual differences or 
responses), the square of the standard deviation 
was assumed to be normally distributed 
(Hopkins, 2018), and the magnitude thresholds 
are one-half of those in the above scales, equiv-
alent to evaluating two standard deviations with 
the above thresholds (Smith & Hopkins, 2011). 
Effects of between- or within-subject linear nu-
meric predictors were evaluated for two be-
tween- or within-subject standard deviations of 
the predictor, representing typically high minus 
typically low predicted effects (Hopkins et al., 
2009). 
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